
Kochen-Specker Theorem and Games

Laura Mancinska
(ID 20286922)

December 22, 2007

1 Introduction

One of the statements one would hear pretty early in any quantum mechanics
course is that for quantum particles there are properties which do not have
definite values. For example, if we measure |+〉 in standard basis, the best we
can do to describe the outcome is to say, that with probability 1/2 we will get
0 and with probability 1/2 we will get 1. Yet one could wonder, is this really
the way things are or is it just because our description of this quantum particle
is incomplete, but in fact there are some hidden variables inside every quantum
system that contain enough information to tell the outcome of measurement
(see Fig. 1).

However, many people disdain the idea of hidden variables, so there has been
rather long history of theorems that forbid theories involving hidden variables.
Usually if one wants to prove some no hidden variables theorem he has to assume
something about the hidden variables theories he is going to forbid. One of such
assumptions is non-contextuality, which means that the outcome we get after
measuring with an observable is the same regardless of what other observables
we choose to measure at the same time.

The first theorem forbidding hidden variables theories is due to von Neumann
in 1932. Then for a third of a century everyone cited von Neumann’s work care-
lessly, till Bell in 1966 indicated that there was an unreasonable assumption in
von Neumann’s proof and urged for further examination of the problem (see
[6] and [1] for more historical details). Bell also constructed a hidden variables
model for one qubit that could assign the outcome of any observable in a way
consistent with quantum mechanics. He also proved two theorems that for-
bid non-contextual hidden variables theories using counterexamples with larger
quantum systems. Yet surprisingly he himself thought that hidden variables
do exists and considered these theorems only as characterizations of the hidden
variables theory we should look for.

In this essay we will discuss several versions of one of the two Bell’s theorems.
The theorem we will consider was also independently proven by Kochen and
Specker in 1967 (see [5]), hence it is called Bell-Kochen-Specker theorem. For
shortness and in order not to mix this theorem with another Bell’s theorem from
now on we will refer to it as Kochen-Specker theorem. We will be interested in
proving several versions of this theorem and the following lemma will turn out
to be of great use:
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vHA1L=0, vHA2L=1,

vHA3L=1, ...

vHA1L=1, vHA2L=1,

vHA3L=0, ...

Figure 1: Quantum particles with hidden variables, where v(Ai) stands for the
outcome of observable Ai we are going to get upon measuring the particle. Note
that we have assumed non-contextuality.

Lemma 1. If mutually commuting observables A1, A2, . . . , An satisfy some
functional identity

f(A1, A2, . . . , An) = 0,

then the outcomes we get will satisfy the same functional identity. Therefore,
the values v(Ai) assigned to these observables in an individual system must also
be related by

f

(

v(A1), v(A2), . . . , v(An)

)

= 0

Proof. Further on we will apply this lemma only for polynomial functional iden-
tities. Therefore, we will prove only the case when f is some polynomial. Mutu-
ally commuting observables A1, A2, . . . , An can be simultaneously diagonalized
in some basis B (see [8] pp. 172). Thus, mathematically we can think of measur-
ing with A1, A2, . . . , An as measuring in basis B. If |bi〉 ∈ B is the state after the
measurement, then we got outcome λi for observable Ai, where Ai |bi〉 = λi |bi〉.
So, we have

0 = 〈bi| f
(

v(A1), v(A2), . . . , v(An)

)

|bi〉 = f(λ1, λ2, . . . , λn),

which means that the functional identity f is satisfied by the outcomes of the
measurement.

2 Kochen-Specker theorem

Theorem 1. (3-dimensional version of Kochen-Specker theorem) In a Hilbert
space of dimension ≥ 3 there is a set of observables for which it is impossible to
assign outcomes in a way consistent with quantum mechanics formalism (i.e., in
a way that all functional identities satisfied by mutually commuting observables
are also satisfied by the values assigned to them in each individual system).

We will not give a complete proof of this theorem. Instead, we will give the
outline of the proof and a bit discuss various constructions that people have used
to prove this theorem. Main idea of the proof can be stated as follows. First,
we find an explicit set of observables and some functional identities that are
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satisfied by some mutually commuting observables form this set. Then we show
that these functional identities cannot be satisfied by the outcomes assigned to
the observables.

The set of observables we are interested in will consist of squares of the ob-
servables measuring the spin component along some direction in real space. Let
us now examine these observables a bit closer. The observables for measuring
the spin component in the directions of x, y and z axes are as follows:

Sx =
1√
2





0 1 0
1 0 1
0 1 0



 Sy =
1√
2





0 −i 0
i 0 −i
0 i 0



 Sz =





1 0 0
0 0 0
0 0 −1





The observables for measuring the spin component in an arbitrary direction
n = (x, y, z) ∈ S2 is given by:

Sn = n · S = xSx + ySy + zSz,

where dot stands for inner product. One can check that the eigenvalues of Sn

are 1, -1 and 0 (or see some book on quantum mechanics e.g. [4]). Therefore
the eigenvalues of S2

n are 1 and 0.

Claim 1. If unit vectors v1, v2 are orthogonal, then S2

v1
commutes with S2

v2
.

Proof. It is just arithmetic to check that Sx, Sy, Sz are mutually commuting.
Then let vi = (ai,1, ai,2, ai,3) and S1 := Sx, S2 := Sy, S3 := Sz. Now we have

[Sv1
, Sv2

] = Sv1
Sv2

− Sv2
Sv1

=

3
∑

i=1

3
∑

j=1

a1,ia2,jSiSj −
3

∑

i=1

3
∑

j=1

a2,ia1,jSiSj =

=

3
∑

i=1

3
∑

j=1

a1,ia2,j [Si, Sj ] = 0

Claim 2. If unit vectors v1, v2, v3 are mutually orthogonal, then S2

v1
+ S2

v2
+

S2

v3
= 2I.

Proof. First it is just arithmetic to check that S2

x + S2

y + S2

z = 2I. Then let
vi = (ai,1, ai,2, ai,3) and S1 := Sx, S2 := Sy, S3 := Sz. Now we have

S2

v1
+ S2

v2
+ S2

v3
=

3
∑

i=1





3
∑

j=1

ai,jSj
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=

3
∑

i=1

3
∑

j=1

3
∑

k=1

ai,jai,kSjSk =

=
3

∑

j=1

3
∑

k=1

δjkSjSk = S2

x + S2

y + S2

z = 2I

Considering the two claims above, we can reduce the task of proving the
theorem to the following problem:

Find a set of vectors V ∈ R
3 for which it is impossible to assign “0” and “1”

(outcomes of observables S2

v) so that within each mutually orthogonal triplet of
vectors “1” is assigned to exactly two of them.

Bell in 1966 was first to prove the existence of such a set, however he did not
explicitly describe it (see [6]). Just a year later Kochen and Specker came up
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Figure 2: Three superimposed cubes. The vectors lie along the lines connecting
center of the cubes with their vertices, midpoints of the edges and faces

Figure 3: Peres’s set of vectors sat-
isfying the property required in the
proof of Kochen-Specker theorem.

Figure 4: Peres’s set of vectors com-
pleted so that every pair of orthog-
onal vectors has a third vector or-
thogonal to both of them. There are
48 green points, but half of them are
redundant.
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with an explicit set of 117 vectors satisfying the required property (see [5]). Yet
some claim (see [1]) that most people found this proof too tedious to read. Then
Peres came up with a set of 33 vectors, that enjoy a lot of symmetries making
the proof much simpler (see [7] and Fig. 3). Penrose indicated that Peres’s
set of vectors can be interpreted as three superimposed cubes. The vectors lie
along the lines connecting center of the cubes with their vertices, midpoints of
the edges and faces (see Fig. 2). In both figures 3 and 2 there are 2 · 33 = 66
points, but we need only half of them, since v and −v correspond to the same
observable S2

v = S2

−v.
Yet there is a catch in Peres’s proof – I verified that in fact it is possible

to consistently assign the outcomes for the observables corresponding to the 33
vectors in Peres’s set, if restrictions are imposed only on triplets of orthogonal
vectors. The catch is that he imposes restrictions also on pairs of orthogonal
vectors which do not have the third orthogonal vector in his set. Since there is no
functional relation like the one in Claim 2 known for pairs of orthogonal vectors,
he implicitly imposes the restriction from Claim 2 on the pair and the third
orthogonal vector. It means that in fact he uses more than 33 vectors. In his
original proof in [7, pp. 198] one can find 8 restrictions for pairs. Unfortunately
it is not enough to add the third orthogonal vector to just 8 pairs, since he
also uses symmetry argument. We need to add 24 vectors, so that any pair of
orthogonal vectors in the initial set would have a third vector orthogonal to the
previous two (see Fig. 4). In fact after the addition of these 24 vectors it turns
out that for every pair of orthogonal vectors we can find a third vector that is
orthogonal to both of them. Therefore it would be fair to say that Peres’s proof
actually requires 33 + 24 = 57 vectors.

2.1 Rules of the Kochen-Specker game

Let V be a set of vectors in real space from some of the proofs of 3-dimensional
version of Kochen-Specker theorem. As we already saw in the case of Peres’s
proof, it might be necessary to take more vectors than the authors of the proofs
claim.

• Verifier asks Alice to assign “0” and “1” to some mutually orthogonal
triple of vectors v1, v2, v3 ∈ V . He chooses one vector vl (l ∈ 1, 2, 3) from
the triplet v1, v2, v3 he gave Alice and asks Bob to assign “0” or “1” to it.

• Alice and Bob win if they satisfy two rules:

1. Parity rule. Alice has to assign “1” to exactly two of the vectors.

2. Consistency rule. Alice and Bob must assign the same value to the
vector they have in common.

3 Quantum strategy for Kochen-Specker game

1. Alice and Bob together prepare a completely entangled two qutrit state:

|Ψ〉 =
1√
3
(|00〉 + |11〉 + |22〉), (1)

where the first qutrit belongs to Alice, but the second belongs to Bob.
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2. When verifier asks Alice to assign “0” and “1” to the mutually orthogonal
vectors v1, v2, v3, she measures her part of the state |Ψ〉 with a POVM
|v1〉 〈v1| , |v2〉 〈v2| , |v3〉 〈v3|. She assigns “0” to the vector to which her
state collapsed to after the measurement and “1” to the other two vectors.

3. When verifier asks Bob to assign “0” and “1” to the vector vl ∈ {v1, v2, v3},
he measures his part of the state |Ψ〉 with a POVM |vl〉 〈vl| , I − |vl〉 〈vl|.
Bob assigns “0” to the vector vl if the state collapsed to |vl〉, and “1” if
otherwise.

We will now prove that the above strategy is perfect for Alice and Bob. First,
it is evident that parity rule is always satisfied, since Alice always assigns “1”
to exactly two vectors. Now let us see why is consistency rule always satisfied.
Since vectors v1, v2, v3 are mutually orthogonal they form a basis of a one qutrit
state space. Let |t〉 = a1

t |v1〉 + a2

t |v2〉 + a3

t |v3〉. If we express the state |Ψ〉 in
this basis, we get:

|Ψ〉 =
1√
3
(|00〉 + |11〉 + |22〉) =

∑

t∈{0,1,2}





∑

i∈{1,2,3}

ai
t |vi〉





2

=

=
∑

t∈{0,1,2}

∑

i,j∈{0,1,2}

ai
ta

j
t |vi〉 |vj〉 =

∑

i,j∈{0,1,2}

δij |vi〉 |vj〉 =

= |v0〉 |v0〉 + |v1〉 |v1〉 + |v2〉 |v2〉 ,

Therefore, if Alice’s part of the state |Ψ〉 has collapsed to vi ∈ {v1, v2, v3}, then
Bob is also left with vi. He assigns “0” to the vector vl if and only if vi = vl.
Since Alice assigned “0” to the vector vi, we now see that consistency rule will
always be satisfied.

Note that there cannot be perfect classical strategy for Alice and Bob, as
otherwise due to consistency rule we would be able to assign “0” and “1” to
the vectors from the set V in a way forbidden by the 3-dimensional version of
Kochen-Specker theorem.

4 Magic Square

If we are not particularly interested in proving no hidden variables theorems in
three dimensions we can be content with the 4-dimensional version of Kochen-
Specker theorem for which a pleasantly succinct proof is known. Also we will
make a game using the set of observables considered in this proof.

Theorem 2. (4-dimensional version of Kochen-Specker theorem) In a Hilbert
space of dimension ≥ 4 there is a set of observables for which it is impossible to
assign outcomes in a way consistent with quantum mechanics formalism.

Proof. As in the proof of the 3-dimensional version of Kochen-Specker theorem
we will find a set of observables that satisfy certain functional identities which
cannot be satisfied by the values assigned to them. The set of observables we will
use in this proof is shown in Fig. 5. It is easy to check that observables in the
same row or column are mutually commuting (see Fig. 6 for multiplication table
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-I -I -I

IÄZ ZÄI ZÄZ I

XÄI IÄX XÄX I

-XÄZ -ZÄX YÄY I

Figure 5: Magic square. Observables in the same row or column are mutu-
ally commuting. Observables in each row multiply to identity and to negative
identity in each column.

X Y Z

X I iZ -iY

Y -iZ I iX

Z iY -iX I

Figure 6: Multiplication table of Pauli matrices.

of Pauli matrices). The functional identities that they satisfy is that observables
in each row multiply to identity, whereas in each row to negative identity. From
Lemma 1 we conclude that also values assigned to these observables should
satisfy the same functional identities - they should multiply to +1 in each row
and to -1 in each column. Yet it is not possible, since the row identities require
the product of all nine values to be (+1)3 = 1, whereas column identities require
it to be (−1)3 = −1.

4.1 Rules of the magic square game

• Verifier asks Alice to fill in the entries of some row of a 3 × 3 array with
“+1” and “-1”. He asks Bob to fill in some column of 3 × 3 array with
“+1” and “-1”.

• Alice and Bob win if they satisfy the following two rules:

1. Parity rule. The parity of entries filled with “-1” has to be even for
Alice (row player) and odd for Bob (column player).

7



2. Consistency rule. Alice and Bob must assign the same value for the
entry on which Alice’s row intersects with Bob’s column.

4.2 Quantum strategy

1. Alice and Bob together prepare two copies of completely entangled quan-
tum state:

|Ψ〉 =

(

1√
2
(|00〉 + |11〉)

)⊗2

, (2)

where the first and the third qubit belongs to Alice, but the second and
the fourth belongs to Bob.

2. When verifier asks Alice to reveal some row, she measures her qubits with
the mutually commuting observables in the corresponding row of the magic
square (see Fig. 5) and fills the row with outcomes of her measurement.
Strategy for Bob is similar.

We will now prove that the above quantum strategy is perfect for Alice and
Bob. In order to do that, we have to show that both parity and consistency
rules are always satisfied. First, let us look at the parity rule. Recall that the
observables in each row of the magic square multiply to identity and to negative
identity in each column. Therefore, according to Lemma 1 we can conclude
that the outcomes of measurements will satisfy the same functional identities.
In other words, values filled in by Alice will multiply to +1, whereas entries
filled in by Bob will multiply to -1. Thus, we see that parity rule will be always
met.

Now let us consider consistency rule. If B = {|b1〉 , |b2〉 , |b3〉 , |b4〉} is an
orthonormal basis of two qubit state space, then B = {|b1〉, |b2〉, |b3〉, |b4〉} is
another orthonormal basis of two qubit state space, where |bi〉 is obtained from
|bi〉 by taking the complex conjugate of each its component. If we express the
Alice’s part of state |Ψ〉 in basis B and Bob’s part in basis B, we get

|Ψ〉 =
1

4

(

|b1〉 |b1〉 + |b2〉 |b2〉 + |b3〉 |b3〉 + |b4〉 |b4〉
)

(3)

Indeed, if |bk〉 = ak
00

|00〉 + ak
01

|01〉 + ak
10

|10〉 + ak
11

|11〉, then

1

4

(

|b1〉 |b1〉 + |b2〉 |b2〉 + |b3〉 |b3〉 + |b4〉 |b4〉
)

=
1

4

4
∑

k=1

∑

i,j∈{0,1}2

ak
i ak

j |i〉 |j〉 =
1

4

∑

i,j∈{0,1}2

δi,j |i〉 |j〉

=
1

4
(|00〉 |00〉 + |01〉 |01〉 + |10〉 |10〉 + |11〉 |11〉)

which is exactly the state |Ψ〉 in (2) after rearranging the qubits.
Since we can find a full set of real eigenvectors for all Pauli matrices, it is

also possible to find a basis consisting of real vectors for every row in the magic
square that would diagonalize all the observables in that row. It is obvious how
to choose this basis except maybe in case of last row. Therefore, we here give
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the basis for the last row:








−1
1
1
1









,









1
−1
1
1









,









1
1
−1
1









,









1
1
1
−1









Recall that we can think of measuring with commuting observables as mea-
suring in a basis that diagonalizes these observables. Above we saw that we
can diagonalize observables in each row of the magic square in a basis B that
consists only of real vectors. Therefore bases B and B will be the same and if
Alice’s part of the state |Ψ〉 collapsed to |bi〉 after her measurement, then Bob
is also left with |bi〉 = |bi〉. When Bob measures with the observable that lies
on the intersection of Alice’s row with his column, he of course gets the same
outcome as Alice. So, we see that also consistency rule will be always satisfied
and therefore the given quantum strategy is perfect for Alice and Bob.

Note that there cannot be perfect classical strategy for Alice and Bob, as
otherwise due to consistency rule we would be able to fill in all the entries in the
magic square in a way that they multiply to +1 in each row and to -1 in each
column. But as we saw in the proof of 4-dimensional version of Kochen-Speker
theorem, this is impossible.

5 Magic star

In this section we will consider another version of Kochen-Specker theorem,
that is weaker than the previous ones. However, this version provides a link
between Kochen-Specker theorem and Bell’s theorem (see [1]). Also we will
formulate another game that is based on the magic star construction use in the
proof of this theorem. The proof of this theorem will be similar to the proof of
4-dimensional version of Kochen-Specker.

Theorem 3. (8-dimensional version of Kochen-Specker theorem) In a Hilbert
space of dimension ≥ 8 there is a set of observables for which it is impossible to
assign outcomes in a way consistent with quantum mechanics formalism.

Proof. The set of observables we are interested in is depicted in Fig. 7. It is
easy to check that observables lying on the same edge of the magic star are
mutually commuting. Functional identities satisfied by these observables are
that the mutually commuting observables lying on the same edge multiply to
identity, except for the horizontal edge. The commuting observables lying on
the horizontal edge multiply to negative identity. Now note that it is impossible
to assign each observable one of its two eigenvalues (i.e, +1 and -1) in a way
that all of the above mentioned functional identities would be satisfied. This is
so, since the product over all five edges (+1)4 · (−1) = −1 should correspond to
the product of squares of all entries in a magic star, which of course is always a
positive number.

5.1 Rules of the magic star game

• Verifier asks Alice to fill in the four entries along some edge of magic star
with “+1” and “-1”. He asks the same of Bob.
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XÄZÄZ

ZÄIÄI

XÄXÄX

IÄZÄI IÄXÄI

ZÄXÄZZÄZÄX

IÄIÄX

XÄIÄI

IÄIÄZ

Figure 7: Magic star. Observables lying on the same edge of the star are mutu-
ally commuting. Observables along every edge of the star except the horizontal
one multiply to identity and to negative identity along the horizontal edge.

• Alice and Bob win if they satisfy the following two rules

1. Parity rule. The parity of entries filled with “-1” has to be even for
every edge except for the horizontal one. The parity of entries filled
with “-1” has to be odd for the horizontal edge.

2. Consistency rule. Alice and Bob must assign the same value for the
entry (or entries) on which Alice’s edge intersects with Bob’s column.

5.2 Quantum strategy

1. Alice and Bob together prepare three copies of completely entangled quan-
tum state:

|Ψ〉 =

(

1√
2
(|00〉 + |11〉)

)⊗3

, (4)

where the first, the third and the fifth qubit belongs to Alice, but the
second, the fourth and the sixth belongs to Bob.

2. When verifier asks Alice to reveal some edge, she measures her qubits
with the mutually commuting observables on the corresponding edge of
the magic star (see Fig. 7) and fills the entries with outcomes of her
measurement. Strategy for Bob is similar.

Strategy for magic star game is similar to that of magic square game, so
the proof that this strategy is perfect will also be similar. We need to show
that both parity and consistency rules are always satisfied. Since observables
lying on the edges other than horizontal multiply to identity and observables
on the horizontal edge multiply to negative identity, according to Lemma 1 we
can conclude that parity rule will be always satisfied.
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Now let us examine consistency rule. If B = {|bi〉}8

i=1
is an orthonormal basis

of three qubit state space, then B = {|bi〉}8

i=1
is another orthonormal basis of

two qubit state space, where |bi〉 is obtained from |bi〉 by taking the complex
conjugate of each its component. If we express the Alice’s part of state |Ψ〉 in
basis B and Bob’s part in basis B, we obtain an expression similar to (3):

|Ψ〉 =
1

8

8
∑

i=1

|bi〉 |bi〉

As in case of magic square we can diagonalize all the observables on each
edge of the magic star in a basis B consisting only of real vectors, since it is
possible to find a full set of real eigenvectors for every Pauli matrix. It is evident,
how to find this basis except maybe for the horizontal edge. Therefore, we here
give the basis that diagonalize the observables on the horizontal edge:

























−1
1
1
1
1
1
1
−1

























,

























1
−1
1
1
1
1
−1
1

























,

























1
1
−1
1
1
−1
1
1

























,

























1
1
1
−1
−1
1
1
1

























,

























−1
1
1
1
−1
−1
−1
1

























,

























1
−1
1
1
−1
−1
1
−1

























,

























1
1
−1
1
−1
1
−1
−1

























,

























1
1
1
−1
1
−1
−1
−1

























,

When Alice measures with commuting observables lying on some edge of the
magic star, we can think of it as a measurement in basis B = {|bi〉}8

i=1
consisting

only of real vectors. Therefore, if Alice’s state after her measurement collapses
to |bi〉 Bob is also left with |bi〉 = |bi〉, since B = B. When Bob measures with
the observable that lies on the intersection of Alice’s row with his column, he
of course gets the same outcome as Alice. So, we see that also consistency rule
will be always satisfied and therefore the given quantum strategy is perfect for
Alice and Bob.

Note that as in case of magic square there cannot be perfect classical strategy
for Alice and Bob, as otherwise due to consistency rule we would be able to fill
in all the entries in the magic star in a way forbidden by 8-dimensional version
of Kochen-Specker theorem.
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